Characterization of X-Chromosome Gene Expression in Bovine Blastocysts Derived by In vitro Fertilization and Somatic Cell Nuclear Transfer

نویسندگان

  • Byungkuk Min
  • Jung Sun Park
  • Kyuheum Jeon
  • Yong-Kook Kang
چکیده

To better understand X-chromosome reactivation (XCR) during early development, we analyzed transcriptomic data obtained from bovine male and female blastocysts derived by in-vitro fertilization (IVF) or somatic-cell nuclear transfer (SCNT). We found that X-linked genes were upregulated by almost two-fold in female compared with male IVF blastocysts. The upregulation of X-linked genes in female IVFs indicated a transcriptional dimorphism between the sexes, because the mean autosomal gene expression levels were relatively constant, regardless of sex. X-linked genes were expressed equivalently in the inner-cell mass and the trophectoderm parts of female blastocysts, indicating no imprinted inactivation of paternal X in the trophectoderm. All these features of X-linked gene expression observed in IVFs were also detected in SCNT blastocysts, although to a lesser extent. A heatmap of X-linked gene expression revealed that the initial resemblance of X-linked gene expression patterns between male and female donor cells turned sexually divergent in host SCNTs, ultimately resembling the patterns of male and female IVFs. Additionally, we found that sham SCNT blastocysts, which underwent the same nuclear-transfer procedures, but retained their embryonic genome, closely mimicked IVFs for X-linked gene expression, which indicated that the embryo manipulation procedure itself does not interfere with XCR in SCNT blastocysts. Our findings indicated that female SCNTs have less efficient XCR, suggesting that clonal reprogramming of X chromosomes is incomplete and occurs variably among blastocysts, and even among cells in a single blastocyst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-12: Nuclear Reprogramming in Bovin Somatic Cell Nuclear Transfer

Somatic cell nuclear transfer (SCNT or cloning) returns a differentiated cell to a totipotent status; a process termed nuclear reprogramming. Reproductive cloning has potential applications in both agriculture and biomedicine, but is limited by low efficiency. To understand the deficiencies of nuclear reprogramming, our research has focused on both candidate genes and global gene expression pat...

متن کامل

Transcriptomic Features of Bovine Blastocysts Derived by Somatic Cell Nuclear Transfer

Reprogramming incompletely occurs in most somatic cell nuclear transfer (SCNT) embryos, which results in misregulation of developmentally important genes and subsequent embryonic malfunction and lethality. Here we examined transcriptome profiles in single bovine blastocysts derived by in vitro fertilization (IVF) and SCNT. Different types of donor cells, cumulus cell and ear-skin fibroblast, we...

متن کامل

A Cathepsin B Inhibitor, E-64, Improves the Preimplantation Development of Bovine Somatic Cell Nuclear Transfer Embryos

Bovine somatic cell nuclear transfer (SCNT) is an important and powerful tool for basic research and biomedical and agricultural applications, however, the efficiency of SCNT has remained extremely low. In this study, we investigated the effects of cathepsin B inhibitor (E-64) supplementation of culture medium on in vitro development of bovine SCNT embryos. We initially used three concentration...

متن کامل

P-67: Quantitative Expression of Pluripotency Specific-Genes in Mouse Blastocysts Produced by In Vitro Fertilization

Background: The efficiency of in vitro fertilization (IVF) is still low to be developed to blastocyst stage probably because of environmental conditions. It is likely that in vitro environment can not exactly mimic in vivo environment due to differences in media, metabolic content, atmospheric composition, temperature and pH. Therefore it may affect embryo quality by changing in embryo gene exp...

متن کامل

I-8: Somatic Cell Nuclear Reprogramming byMouse Oocytes Endures Beyond ReproductiveDecline

Background: The mammalian oocyte has the unique feature of supporting fertilization and normal development while being able of reprogramming the nuclei of somatic cells towards pluripotency, and occasionally even totipotency. Whilst oocyte quality is known to decay with somatic ageing, it is not a given that different biological functions decay concurrently. In this study, we tested whether ooc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017